Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
1.
Sci Data ; 10(1): 348, 2023 06 02.
Article in English | MEDLINE | ID: covidwho-20243476

ABSTRACT

The outbreak of the SARS-CoV-2 pandemic has put healthcare systems worldwide to their limits, resulting in increased waiting time for diagnosis and required medical assistance. With chest radiographs (CXR) being one of the most common COVID-19 diagnosis methods, many artificial intelligence tools for image-based COVID-19 detection have been developed, often trained on a small number of images from COVID-19-positive patients. Thus, the need for high-quality and well-annotated CXR image databases increased. This paper introduces POLCOVID dataset, containing chest X-ray (CXR) images of patients with COVID-19 or other-type pneumonia, and healthy individuals gathered from 15 Polish hospitals. The original radiographs are accompanied by the preprocessed images limited to the lung area and the corresponding lung masks obtained with the segmentation model. Moreover, the manually created lung masks are provided for a part of POLCOVID dataset and the other four publicly available CXR image collections. POLCOVID dataset can help in pneumonia or COVID-19 diagnosis, while the set of matched images and lung masks may serve for the development of lung segmentation solutions.


Subject(s)
COVID-19 , Deep Learning , Radiography, Thoracic , X-Rays , Humans , Algorithms , Artificial Intelligence , COVID-19/diagnostic imaging , COVID-19 Testing , Pneumonia , Poland , Radiography, Thoracic/methods , SARS-CoV-2
2.
BMC Bioinformatics ; 24(1): 190, 2023 May 09.
Article in English | MEDLINE | ID: covidwho-2312815

ABSTRACT

BACKGROUND: An artificial-intelligence (AI) model for predicting the prognosis or mortality of coronavirus disease 2019 (COVID-19) patients will allow efficient allocation of limited medical resources. We developed an early mortality prediction ensemble model for COVID-19 using AI models with initial chest X-ray and electronic health record (EHR) data. RESULTS: We used convolutional neural network (CNN) models (Inception-ResNet-V2 and EfficientNet) for chest X-ray analysis and multilayer perceptron (MLP), Extreme Gradient Boosting (XGBoost), and random forest (RF) models for EHR data analysis. The Gradient-weighted Class Activation Mapping and Shapley Additive Explanations (SHAP) methods were used to determine the effects of these features on COVID-19. We developed an ensemble model (Area under the receiver operating characteristic curve of 0.8698) using a soft voting method with weight differences for CNN, XGBoost, MLP, and RF models. To resolve the data imbalance, we conducted F1-score optimization by adjusting the cutoff values to optimize the model performance (F1 score of 0.77). CONCLUSIONS: Our study is meaningful in that we developed an early mortality prediction model using only the initial chest X-ray and EHR data of COVID-19 patients. Early prediction of the clinical courses of patients is helpful for not only treatment but also bed management. Our results confirmed the performance improvement of the ensemble model achieved by combining AI models. Through the SHAP method, laboratory tests that indicate the factors affecting COVID-19 mortality were discovered, highlighting the importance of these tests in managing COVID-19 patients.


Subject(s)
COVID-19 , Deep Learning , Humans , Electronic Health Records , COVID-19/diagnostic imaging , X-Rays , Artificial Intelligence
3.
Artif Intell Med ; 142: 102571, 2023 08.
Article in English | MEDLINE | ID: covidwho-2317551

ABSTRACT

Evolutionary algorithms have been successfully employed to find the best structure for many learning algorithms including neural networks. Due to their flexibility and promising results, Convolutional Neural Networks (CNNs) have found their application in many image processing applications. The structure of CNNs greatly affects the performance of these algorithms both in terms of accuracy and computational cost, thus, finding the best architecture for these networks is a crucial task before they are employed. In this paper, we develop a genetic programming approach for the optimization of CNN structure in diagnosing COVID-19 cases via X-ray images. A graph representation for CNN architecture is proposed and evolutionary operators including crossover and mutation are specifically designed for the proposed representation. The proposed architecture of CNNs is defined by two sets of parameters, one is the skeleton which determines the arrangement of the convolutional and pooling operators and their connections and one is the numerical parameters of the operators which determine the properties of these operators like filter size and kernel size. The proposed algorithm in this paper optimizes the skeleton and the numerical parameters of the CNN architectures in a co-evolutionary scheme. The proposed algorithm is used to identify covid-19 cases via X-ray images.


Subject(s)
COVID-19 , Deep Learning , Humans , X-Rays , COVID-19/diagnostic imaging , Algorithms , Neural Networks, Computer
4.
Comput Biol Med ; 159: 106962, 2023 06.
Article in English | MEDLINE | ID: covidwho-2316623

ABSTRACT

Large chest X-rays (CXR) datasets have been collected to train deep learning models to detect thorax pathology on CXR. However, most CXR datasets are from single-center studies and the collected pathologies are often imbalanced. The aim of this study was to automatically construct a public, weakly-labeled CXR database from articles in PubMed Central Open Access (PMC-OA) and to assess model performance on CXR pathology classification by using this database as additional training data. Our framework includes text extraction, CXR pathology verification, subfigure separation, and image modality classification. We have extensively validated the utility of the automatically generated image database on thoracic disease detection tasks, including Hernia, Lung Lesion, Pneumonia, and pneumothorax. We pick these diseases due to their historically poor performance in existing datasets: the NIH-CXR dataset (112,120 CXR) and the MIMIC-CXR dataset (243,324 CXR). We find that classifiers fine-tuned with additional PMC-CXR extracted by the proposed framework consistently and significantly achieved better performance than those without (e.g., Hernia: 0.9335 vs 0.9154; Lung Lesion: 0.7394 vs. 0.7207; Pneumonia: 0.7074 vs. 0.6709; Pneumothorax 0.8185 vs. 0.7517, all in AUC with p< 0.0001) for CXR pathology detection. In contrast to previous approaches that manually submit the medical images to the repository, our framework can automatically collect figures and their accompanied figure legends. Compared to previous studies, the proposed framework improved subfigure segmentation and incorporates our advanced self-developed NLP technique for CXR pathology verification. We hope it complements existing resources and improves our ability to make biomedical image data findable, accessible, interoperable, and reusable.


Subject(s)
Pneumonia , Pneumothorax , Thoracic Diseases , Humans , Pneumothorax/diagnostic imaging , Radiography, Thoracic/methods , X-Rays , Access to Information , Pneumonia/diagnostic imaging
5.
Eur J Med Chem ; 253: 115311, 2023 May 05.
Article in English | MEDLINE | ID: covidwho-2304178

ABSTRACT

Despite the approval of vaccines, monoclonal antibodies and restrictions during the pandemic, the demand for new efficacious and safe antivirals is compelling to boost the therapeutic arsenal against the COVID-19. The viral 3-chymotrypsin-like protease (3CLpro) is an essential enzyme for replication with high homology in the active site across CoVs and variants showing an almost unique specificity for Leu-Gln as P2-P1 residues, allowing the development of broad-spectrum inhibitors. The design, synthesis, biological activity, and cocrystal structural information of newly conceived peptidomimetic covalent reversible inhibitors are herein described. The inhibitors display an aldehyde warhead, a Gln mimetic at P1 and modified P2-P3 residues. Particularly, functionalized proline residues were inserted at P2 to stabilize the ß-turn like bioactive conformation, modulating the affinity. The most potent compounds displayed low/sub-nM potency against the 3CLpro of SARS-CoV-2 and MERS-CoV and inhibited viral replication of three human CoVs, i.e. SARS-CoV-2, MERS-CoV, and HCoV 229 in different cell lines. Particularly, derivative 12 exhibited nM-low µM antiviral activity depending on the virus, and the highest selectivity index. Some compounds were co-crystallized with SARS-CoV-2 3CLpro validating our design. Altogether, these results foster future work toward broad-spectrum 3CLpro inhibitors to challenge CoVs related pandemics.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Peptidomimetics , Humans , SARS-CoV-2 , Protease Inhibitors/chemistry , Peptidomimetics/pharmacology , Peptidomimetics/chemistry , X-Rays , Peptide Hydrolases , Antiviral Agents/chemistry
6.
J Digit Imaging ; 36(3): 988-1000, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2288093

ABSTRACT

COVID-19 has claimed millions of lives since its outbreak in December 2019, and the damage continues, so it is urgent to develop new technologies to aid its diagnosis. However, the state-of-the-art deep learning methods often rely on large-scale labeled data, limiting their clinical application in COVID-19 identification. Recently, capsule networks have achieved highly competitive performance for COVID-19 detection, but they require expensive routing computation or traditional matrix multiplication to deal with the capsule dimensional entanglement. A more lightweight capsule network is developed to effectively address these problems, namely DPDH-CapNet, which aims to enhance the technology of automated diagnosis for COVID-19 chest X-ray images. It adopts depthwise convolution (D), point convolution (P), and dilated convolution (D) to construct a new feature extractor, thus successfully capturing the local and global dependencies of COVID-19 pathological features. Simultaneously, it constructs the classification layer by homogeneous (H) vector capsules with an adaptive, non-iterative, and non-routing mechanism. We conduct experiments on two publicly available combined datasets, including normal, pneumonia, and COVID-19 images. With a limited number of samples, the parameters of the proposed model are reduced by 9x compared to the state-of-the-art capsule network. Moreover, our model has faster convergence speed and better generalization, and its accuracy, precision, recall, and F-measure are improved to 97.99%, 98.05%, 98.02%, and 98.03%, respectively. In addition, experimental results demonstrate that, contrary to the transfer learning method, the proposed model does not require pre-training and a large number of training samples.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , COVID-19 Testing , X-Rays
7.
Int J Comput Assist Radiol Surg ; 18(4): 715-722, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2268672

ABSTRACT

PURPOSE: Considering several patients screened due to COVID-19 pandemic, computer-aided detection has strong potential in assisting clinical workflow efficiency and reducing the incidence of infections among radiologists and healthcare providers. Since many confirmed COVID-19 cases present radiological findings of pneumonia, radiologic examinations can be useful for fast detection. Therefore, chest radiography can be used to fast screen COVID-19 during the patient triage, thereby determining the priority of patient's care to help saturated medical facilities in a pandemic situation. METHODS: In this paper, we propose a new learning scheme called self-supervised transfer learning for detecting COVID-19 from chest X-ray (CXR) images. We compared six self-supervised learning (SSL) methods (Cross, BYOL, SimSiam, SimCLR, PIRL-jigsaw, and PIRL-rotation) with the proposed method. Additionally, we compared six pretrained DCNNs (ResNet18, ResNet50, ResNet101, CheXNet, DenseNet201, and InceptionV3) with the proposed method. We provide quantitative evaluation on the largest open COVID-19 CXR dataset and qualitative results for visual inspection. RESULTS: Our method achieved a harmonic mean (HM) score of 0.985, AUC of 0.999, and four-class accuracy of 0.953. We also used the visualization technique Grad-CAM++ to generate visual explanations of different classes of CXR images with the proposed method to increase the interpretability. CONCLUSIONS: Our method shows that the knowledge learned from natural images using transfer learning is beneficial for SSL of the CXR images and boosts the performance of representation learning for COVID-19 detection. Our method promises to reduce the incidence of infections among radiologists and healthcare providers.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , Pandemics , X-Rays , Thorax , Machine Learning
8.
Comput Biol Med ; 157: 106683, 2023 05.
Article in English | MEDLINE | ID: covidwho-2264789

ABSTRACT

-Thoracic disease, like many other diseases, can lead to complications. Existing multi-label medical image learning problems typically include rich pathological information, such as images, attributes, and labels, which are crucial for supplementary clinical diagnosis. However, the majority of contemporary efforts exclusively focus on regression from input to binary labels, ignoring the relationship between visual features and semantic vectors of labels. In addition, there is an imbalance in data amount between diseases, which frequently causes intelligent diagnostic systems to make erroneous disease predictions. Therefore, we aim to improve the accuracy of the multi-label classification of chest X-ray images. Chest X-ray14 pictures were utilized as the multi-label dataset for the experiments in this study. By fine-tuning the ConvNeXt network, we got visual vectors, which we combined with semantic vectors encoded by BioBert to map the two different forms of features into a common metric space and made semantic vectors the prototype of each class in metric space. The metric relationship between images and labels is then considered from the image level and disease category level, respectively, and a new dual-weighted metric loss function is proposed. Finally, the average AUC score achieved in the experiment reached 0.826, and our model outperformed the comparison models.


Subject(s)
Deep Learning , X-Rays , Image Processing, Computer-Assisted/methods , Thorax , Semantics
9.
Clin Respir J ; 17(5): 364-373, 2023 May.
Article in English | MEDLINE | ID: covidwho-2277249

ABSTRACT

OBJECTIVE: COVID-19 is ravaging the world, but traditional reverse transcription-polymerase reaction (RT-PCR) tests are time-consuming and have a high false-negative rate and lack of medical equipment. Therefore, lung imaging screening methods are proposed to diagnose COVID-19 due to its fast test speed. Currently, the commonly used convolutional neural network (CNN) model requires a large number of datasets, and the accuracy of the basic capsule network for multiple classification is limital. For this reason, this paper proposes a novel model based on CNN and CapsNet. METHODS: The proposed model integrates CNN and CapsNet. And attention mechanism module and multi-branch lightweight module are applied to enhance performance. Use the contrast adaptive histogram equalization (CLAHE) algorithm to preprocess the image to enhance image contrast. The preprocessed images are input into the network for training, and ReLU was used as the activation function to adjust the parameters to achieve the optimal. RESULT: The test dataset includes 1200 X-ray images (400 COVID-19, 400 viral pneumonia, and 400 normal), and we replace CNN of VGG16, InceptionV3, Xception, Inception-Resnet-v2, ResNet50, DenseNet121, and MoblieNetV2 and integrate with CapsNet. Compared with CapsNet, this network improves 6.96%, 7.83%, 9.37%, 10.47%, and 10.38% in accuracy, area under the curve (AUC), recall, and F1 scores, respectively. In the binary classification experiment, compared with CapsNet, the accuracy, AUC, accuracy, recall rate, and F1 score were increased by 5.33%, 5.34%, 2.88%, 8.00%, and 5.56%, respectively. CONCLUSION: The proposed embedded the advantages of traditional convolutional neural network and capsule network and has a good classification effect on small COVID-19 X-ray image dataset.


Subject(s)
COVID-19 , Pneumonia, Viral , Humans , COVID-19/diagnostic imaging , X-Rays , Algorithms , Area Under Curve
10.
PLoS One ; 18(2): e0277843, 2023.
Article in English | MEDLINE | ID: covidwho-2277239

ABSTRACT

BACKGROUND: Recent technological and radiological advances have renewed interest in using X-rays to screen and triage people with tuberculosis (TB). The miniaturization of digital X-ray (DXR), combined with automatic interpretation using computer-aided detection (CAD) software can extend the reach of DXR screening interventions for TB. This qualitative study assessed early implementers' experiences and lessons learned when using ultra-portable (UP) DXR systems integrated with CAD software to screen and triage TB. METHODS: Semi-structured interviews were conducted with project staff and healthcare workers at six pilot sites. Transcripts were coded and analyzed using a framework approach. The themes that emerged were subsequently organized and presented using the Consolidated Framework for Implementation Research (CFIR). RESULTS: There were 26 interviewees with varying roles: supervisory, clinicians, radiographers, and radiologists. Participants recognized the portability as the main advantage, but criticize that it involves several compromises on throughput, internet dependence, manoeuvrability, and stability, as well as suitability for patients with larger body sizes. Furthermore, compared to using hardware and software from the same supplier and without digital health information systems, complexity increases with interoperability between hardware and software, and between different electronic health information systems. Currently, there is a limited capacity to implement these technologies, especially due to the need for threshold selection, and lack of guidance on radiation protection suitable for UP DXR machines. Finally, the respondents stressed the importance of having protected means of sharing patient medical data, as well as comprehensive support and warranty plans. CONCLUSION: Study findings suggest that UP DXR with CAD was overall well received to decentralize radiological assessment for TB, however, the improved portability involved programmatic compromises. The main barriers to uptake included insufficient capacity and lack of guidance on radiation protection suitable for UP DXR.


Subject(s)
Computers , Radiographic Image Enhancement , Humans , X-Rays , Radiography , Health Personnel
11.
Int J Environ Res Public Health ; 20(5)2023 02 28.
Article in English | MEDLINE | ID: covidwho-2254578

ABSTRACT

In the last few years, many types of research have been conducted on the most harmful pandemic, COVID-19. Machine learning approaches have been applied to investigate chest X-rays of COVID-19 patients in many respects. This study focuses on the deep learning algorithm from the standpoint of feature space and similarity analysis. Firstly, we utilized Local Interpretable Model-agnostic Explanations (LIME) to justify the necessity of the region of interest (ROI) process and further prepared ROI via U-Net segmentation that masked out non-lung areas of images to prevent the classifier from being distracted by irrelevant features. The experimental results were promising, with detection performance reaching an overall accuracy of 95.5%, a sensitivity of 98.4%, a precision of 94.7%, and an F1 score of 96.5% on the COVID-19 category. Secondly, we applied similarity analysis to identify outliers and further provided an objective confidence reference specific to the similarity distance to centers or boundaries of clusters while inferring. Finally, the experimental results suggested putting more effort into enhancing the low-accuracy subspace locally, which is identified by the similarity distance to the centers. The experimental results were promising, and based on those perspectives, our approach could be more flexible to deploy dedicated classifiers specific to different subspaces instead of one rigid end-to-end black box model for all feature space.


Subject(s)
COVID-19 , Datasets as Topic , Deep Learning , X-Rays , Humans , Algorithms , Mass Chest X-Ray
12.
Tomography ; 9(2): 706-716, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2282309

ABSTRACT

The purpose of this study was to evaluate whether changes in repeated lung ultrasound (LUS) or chest X-ray (CXR) of coronavirus disease 2019 (COVID-19) patients can predict the development of severe disease and the need for treatment in the intensive care unit (ICU). In this prospective monocentric study, COVID-19 patients received standardized LUS and CXR at day 1, 3 and 5. Scores for changes in LUS (LUS score) and CXR (RALE and M-RALE) were calculated and compared. Intra-class correlation was calculated for two readers of CXR and ROC analysis to evaluate the best discriminator for the need for ICU treatment. A total of 30 patients were analyzed, 26 patients with follow-up LUS and CXR. Increase in M-RALE between baseline and follow-up 1 was significantly higher in patients with need for ICU treatment in the further hospital stay (p = 0.008). Both RALE and M-RALE significantly correlated with LUS score (r = 0.5, p < 0.0001). ROC curves with need for ICU treatment as separator were not significantly different for changes in M-RALE (AUC: 0.87) and LUS score (AUC: 0.79), both being good discriminators. ICC was moderate for RALE (0.56) and substantial for M-RALE (0.74). The present study demonstrates that both follow-up LUS and CXR are powerful tools to track the evolution of COVID-19, and can be used equally as predictors for the need for ICU treatment.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , Prospective Studies , Respiratory Sounds , X-Rays , Lung/diagnostic imaging
13.
Front Public Health ; 11: 1025746, 2023.
Article in English | MEDLINE | ID: covidwho-2270826

ABSTRACT

COVID-19 is a novel virus that attacks the upper respiratory tract and the lungs. Its person-to-person transmissibility is considerably rapid and this has caused serious problems in approximately every facet of individuals' lives. While some infected individuals may remain completely asymptomatic, others have been frequently witnessed to have mild to severe symptoms. In addition to this, thousands of death cases around the globe indicated that detecting COVID-19 is an urgent demand in the communities. Practically, this is prominently done with the help of screening medical images such as Computed Tomography (CT) and X-ray images. However, the cumbersome clinical procedures and a large number of daily cases have imposed great challenges on medical practitioners. Deep Learning-based approaches have demonstrated a profound potential in a wide range of medical tasks. As a result, we introduce a transformer-based method for automatically detecting COVID-19 from X-ray images using Compact Convolutional Transformers (CCT). Our extensive experiments prove the efficacy of the proposed method with an accuracy of 99.22% which outperforms the previous works.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , X-Rays , Health Personnel , Tomography, X-Ray Computed
14.
Sci Rep ; 13(1): 3477, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2250166

ABSTRACT

Several artificial intelligence algorithms have been developed for COVID-19-related topics. One that has been common is the COVID-19 diagnosis using chest X-rays, where the eagerness to obtain early results has triggered the construction of a series of datasets where bias management has not been thorough from the point of view of patient information, capture conditions, class imbalance, and careless mixtures of multiple datasets. This paper analyses 19 datasets of COVID-19 chest X-ray images, identifying potential biases. Moreover, computational experiments were conducted using one of the most popular datasets in this domain, which obtains a 96.19% of classification accuracy on the complete dataset. Nevertheless, when evaluated with the ethical tool Aequitas, it fails on all the metrics. Ethical tools enhanced with some distribution and image quality considerations are the keys to developing or choosing a dataset with fewer bias issues. We aim to provide broad research on dataset problems, tools, and suggestions for future dataset developments and COVID-19 applications using chest X-ray images.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , COVID-19 Testing , X-Rays , Bias
15.
Sci Rep ; 13(1): 4226, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2274832

ABSTRACT

In the past few years COVID-19 posed a huge threat to healthcare systems around the world. One of the first waves of the pandemic hit Northern Italy severely resulting in high casualties and in the near breakdown of primary care. Due to these facts, the Covid CXR Hackathon-Artificial Intelligence for Covid-19 prognosis: aiming at accuracy and explainability challenge had been launched at the beginning of February 2022, releasing a new imaging dataset with additional clinical metadata for each accompanying chest X-ray (CXR). In this article we summarize our techniques at correctly diagnosing chest X-ray images collected upon admission for severity of COVID-19 outcome. In addition to X-ray imagery, clinical metadata was provided and the challenge also aimed at creating an explainable model. We created a best-performing, as well as, an explainable model that makes an effort to map clinical metadata to image features whilst predicting the prognosis. We also did many ablation studies in order to identify crucial parts of the models and the predictive power of each feature in the datasets. We conclude that CXRs at admission do not help the predicting power of the metadata significantly by itself and contain mostly information that is also mutually present in the blood samples and other clinical factors collected at admission.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , COVID-19/diagnostic imaging , Metadata , X-Rays , Hospitalization
16.
Math Biosci Eng ; 20(5): 8400-8427, 2023 03 02.
Article in English | MEDLINE | ID: covidwho-2285398

ABSTRACT

In recent years, deep learning's identification of cancer, lung disease and heart disease, among others, has contributed to its rising popularity. Deep learning has also contributed to the examination of COVID-19, which is a subject that is currently the focus of considerable scientific debate. COVID-19 detection based on chest X-ray (CXR) images primarily depends on convolutional neural network transfer learning techniques. Moreover, the majority of these methods are evaluated by using CXR data from a single source, which makes them prohibitively expensive. On a variety of datasets, current methods for COVID-19 detection may not perform as well. Moreover, most current approaches focus on COVID-19 detection. This study introduces a rapid and lightweight MobileNetV2-based model for accurate recognition of COVID-19 based on CXR images; this is done by using machine vision algorithms that focused largely on robust and potent feature-learning capabilities. The proposed model is assessed by using a dataset obtained from various sources. In addition to COVID-19, the dataset includes bacterial and viral pneumonia. This model is capable of identifying COVID-19, as well as other lung disorders, including bacterial and viral pneumonia, among others. Experiments with each model were thoroughly analyzed. According to the findings of this investigation, MobileNetv2, with its 92% and 93% training validity and 88% precision, was the most applicable and reliable model for this diagnosis. As a result, one may infer that this study has practical value in terms of giving a reliable reference to the radiologist and theoretical significance in terms of establishing strategies for developing robust features with great presentation ability.


Subject(s)
COVID-19 , Pneumonia, Viral , Humans , COVID-19/diagnostic imaging , X-Rays , Pneumonia, Viral/diagnostic imaging , Algorithms
17.
J Healthc Qual Res ; 38(4): 214-223, 2023.
Article in Spanish | MEDLINE | ID: covidwho-2244896

ABSTRACT

INTRODUCTION: Health workers are at high risk of becoming infected with COVID-19. The objective of the study was to evaluate the risks and improve the biological and radiological safety measures for taking chest X-rays in patients with COVID-19 in a Social Security hospital in Utcubamba (Peru). MATERIAL AND METHODS: Quasi-experimental intervention study type before and after without a control group, carried out between May and September 2020. A process map and an analysis of failure modes and effects (FMEA) of radiological care were prepared. The gravity (G), occurrence (O), and detectability (D) values ??were found and the risk priority number (RPN) was calculated for each failure mode (FM). FM with RPN ≥ 100 and G ≥ 7 were prioritized. Improvement actions were implemented based on the recommendations of recognized institutions and the O and D values ??were re-evaluated. RESULTS: The process map consisted of 6 threads and 30 steps. 54 FM were identified, 37 of whom had RPN ≥ 100 and 48 had G ≥ 7. Most of the errors occurred during the examination 50% (27). After entering the recommendations, 23 FM had RPN ≥ 100. CONCLUSIONS: Although none of the measures applied through the FMEA made the failure mode impossible, they made it more detectable and less frequent and reduced the RPN for each failure mode; however, a periodic update of the process is necessary.


Subject(s)
COVID-19 , Humans , X-Rays , COVID-19/epidemiology , Risk Assessment , Radiography , Patients
18.
Molecules ; 28(1)2022 Dec 24.
Article in English | MEDLINE | ID: covidwho-2242509

ABSTRACT

A series of new congeners, 1-[2-(1-adamantyl)ethyl]-1H-benzimidazole (AB) and 1-[2-(1-adamantyl)ethyl]-4,5,6,7-tetrahalogeno-1H-benzimidazole (Hal=Cl, Br, I; tClAB, tBrAB, tIAB), have been synthesized and studied. These novel multi-target ligands combine a benzimidazole ring known to show antitumor activity and an adamantyl moiety showing anti-influenza activity. Their crystal structures were determined by X-ray, while intermolecular interactions were studied using topological Bader's Quantum Theory of Atoms in Molecules, Hirshfeld Surfaces, CLP and PIXEL approaches. The newly synthesized compounds crystallize within two different space groups, P-1 (AB and tIAB) and P21/c (tClAB and tBrAB). A number of intramolecular hydrogen bonds, C-H⋯Hal (Hal=Cl, Br, I), were found in all halogen-containing congeners studied, but the intermolecular C-H⋯N hydrogen bond was detected only in AB and tIAB, while C-Hal⋯π only in tClAB and tBrAB. The interplay between C-H⋯N and C-H⋯Hal hydrogen bonds and a shift from the strong (C-H⋯Cl) to the very weak (C-H⋯I) attractive interactions upon Hal exchange, supplemented with Hal⋯Hal overlapping, determines the differences in the symmetry of crystalline packing and is crucial from the biological point of view. The hypothesis about the potential dual inhibitor role of the newly synthesized congeners was verified using molecular docking and the congeners were found to be pharmaceutically attractive as Human Casein Kinase 2, CK2, inhibitors, Membrane Matrix 2 Protein, M2, blockers and Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2, inhibitors. The addition of adamantyl moiety seems to broaden and modify the therapeutic indices of the 4,5,6,7-tetrahalogeno-1H-benzimidazoles.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , X-Rays , Molecular Docking Simulation , Casein Kinase II , Benzimidazoles/pharmacology , Ligands , Membrane Proteins
19.
Int J Environ Res Public Health ; 20(3)2023 01 22.
Article in English | MEDLINE | ID: covidwho-2239908

ABSTRACT

Since December 2019, the coronavirus disease has significantly affected millions of people. Given the effect this disease has on the pulmonary systems of humans, there is a need for chest radiographic imaging (CXR) for monitoring the disease and preventing further deaths. Several studies have been shown that Deep Learning models can achieve promising results for COVID-19 diagnosis towards the CXR perspective. In this study, five deep learning models were analyzed and evaluated with the aim of identifying COVID-19 from chest X-ray images. The scope of this study is to highlight the significance and potential of individual deep learning models in COVID-19 CXR images. More specifically, we utilized the ResNet50, ResNet101, DenseNet121, DenseNet169 and InceptionV3 using Transfer Learning. All models were trained and validated on the largest publicly available repository for COVID-19 CXR images. Furthermore, they were evaluated on unknown data that was not used for training or validation, authenticating their performance and clarifying their usage in a medical scenario. All models achieved satisfactory performance where ResNet101 was the superior model achieving 96% in Precision, Recall and Accuracy, respectively. Our outcomes show the potential of deep learning models on COVID-19 medical offering a promising way for the deeper understanding of COVID-19.


Subject(s)
COVID-19 , Deep Learning , Humans , COVID-19/diagnostic imaging , COVID-19 Testing , X-Rays , Thorax
20.
Med Biol Eng Comput ; 61(6): 1395-1408, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2220196

ABSTRACT

A long-standing challenge in pneumonia diagnosis is recognizing the pathological lung texture, especially the ground-glass appearance pathological texture. One main difficulty lies in precisely extracting and recognizing the pathological features. The patients, especially those with mild symptoms, show very little difference in lung texture, neither conventional computer vision methods nor convolutional neural networks perform well on pneumonia diagnosis based on chest X-ray (CXR) images. In the meanwhile, the Coronavirus Disease 2019 (COVID-19) pandemic continues wreaking havoc around the world, where quick and accurate diagnosis backed by CXR images is in high demand. Rather than simply recognizing the patterns, extracting feature maps from the original CXR image is what we need in the classification process. Thus, we propose a Vision Transformer (VIT)-based model called PneuNet to make an accurate diagnosis backed by channel-based attention through X-ray images of the lung, where multi-head attention is applied on channel patches rather than feature patches. The techniques presented in this paper are oriented toward the medical application of deep neural networks and VIT. Extensive experiment results show that our method can reach 94.96% accuracy in the three-categories classification problem on the test set, which outperforms previous deep learning models.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Humans , COVID-19/diagnostic imaging , X-Rays , SARS-CoV-2 , Algorithms , Pneumonia/diagnostic imaging , COVID-19 Testing
SELECTION OF CITATIONS
SEARCH DETAIL